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The stimulated Raman scattering instability in a fully degenerate electron plasma is studied

applying relativistic hydrodynamic and Maxwell equations. We demonstrated that the instability

develops for weakly and strongly relativistic degenerate plasmas. It is shown that in the field of

strong radiation, a degenerate relativistic plasma effectively responses as in the case of weak

degeneracy. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4989375]

Astrophysical objects contain very intense radiation

sources with their spectral content spanning from radio to c-

ray emission.1 Most types of stars, interstellar gas, active

galactic nuclei, distant quasars, etc., are either comprised by

a significant fraction of plasma or immersed in a plasma

environment.2 The nature of radiation emitted by such plas-

mas is usually interpreted in terms of bremsstrahlung and

synchrotron mechanisms. However, under certain conditions,

the collective parametric effects such as stimulated Raman

scattering (SRS) instability could leave a definite signature

on the radiation spectra.3 Within the framework of classical

plasmas, the SRS has been studied in a variety of systems

such as the laser-driven inertial confinement fusion, particle

acceleration, and plasma heating and for probing the plasma

parameters in laboratory conditions.4–10 Linear and nonlinear

stages of SRS instability have been investigated for cold and

relativistic hot plasmas for electromagnetic (EM) radiation

of arbitrary intensity. A possible role of SRS instability in an

astrophysical plasma is discussed in Refs. 11 and 12 and

references therein; it is shown that induced scattering could

significantly affect radiation from sources with high bright-

ness temperatures.

For the extremely high density plasmas pertinent to

astrophysical objects such as in the interior of white dwarfs,

the neutron or the pre-supernova stars, and presumably, at

the source of gamma ray bursts,2 the classical approximation

breaks down; the relevant plasma is degenerate requiring

Fermi-Dirac statistics for a correct description. The Fermi

energy of the degenerate electron gas is greater than the

binding energy with the atomic nucleus, and as a conse-

quence, all atoms are in an ionized state. The plasma number

density is believed to be in the range from N0 ¼ 1026cm�3 to

N0 ¼ 1034 cm�3, and the matter behaves as a weakly coupled

degenerate plasma provided that averaged interparticle dis-

tance is smaller than the thermal de Broglie wavelength.13

At such densities, the degenerate electron gas must be treated

relativistically even when its “temperature” is nonrelativistic,

in fact, even zero.

The Fermi energy associated with typical particles in a

degenerate electron gas, �F ¼ mec2ðcF � 1Þ (the Fermi cF

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

F=m2
ec2

p
; pF ¼ mecðnR=ncÞ1=314), exceeds the rest

mass energy for densities nR greater than the critical density

nc ¼ m3
ec3=3p2�h3 ¼ 5:9� 1029cm�3.

In studies of nonlinear self-interactions of high frequency

EM and plasma waves in relativistic degenerate electron (as

well as electron-positron) plasmas,15–18 it has been shown such

plasmas can support stable localized EM structures for an arbi-

trary level of degeneracy. The dynamics of these nonlinear EM

structures could provide a theoretical basis for establishing the

nature of the observed radiation. To the best of our knowledge,

the SRS instability of EM radiation in degenerate relativistic

plasmas has not been addressed so far. The SRS instability is a

nonlinear parametric process when a powerful electromagnetic

(EM) wave decays into a plasma wave and an EM wave. In an

underdense plasma with x0> 2xe0, where x0 is the mean fre-

quency of carrier EM pulses and xe0 ¼ ð4pe2N0=meÞ1=2
is the

electron plasma frequency, the SRS results in two EM side-

bands upshifted and downshifted by the plasma frequency. For

a relativistic degenerate electron gas, the radiation frequency at

which SRS could be relevant falls into soft or even hard X-ray

bands. Consequently, it could leave definite footprints in the

spectra of astrophysical X-ray sources.

Our study of the SRS instability is based on the

Maxwell equations and a relativistic electron plasma fluid

model. We will work in terms of the familiar vectorial form

of the fully covariant equations (see, for example, Refs.

19–21) that translate as (in the Coulomb gauge r � A ¼ 0)

@2A

@t2
� c2DAþ c

@

@t
ruð Þ � 4pcJ ¼ 0; (1)

Du ¼ 4peðnRc� N0Þ; (2)

where the vector potential A and the scalar potential u are the

appropriate components of the EM four vector Al ¼ ½u;A�
and J ¼ �enRp=me, and –eccnR constitutes the electron four

current Jl.

The ions just provide a neutralizing background and

have a density N0 in their rest frame which is also taken to

be the fiduciary/laboratory frame. The “rest” frame electron

density, nR, is a Lorentz scalar and is related to the laboratory

frame density N by the relation N¼ cnR. The relativistic

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=m2

ec2
p

is determined from the vector part p of

the four momentums.

In the plasma with zero generalized vorticity X ¼ r
�ðGp� eA=cÞ ¼ 0, the fluid equations for the electrons can

be written as (see Ref. 15 for details) follows:
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@

@t
Gp� e

c
A

� �
þr mec2Gc� eu

� �
¼ 0; (3)

@

@t
nRcþr � nRp=með Þ ¼ 0: (4)

In Eq. (3), the “thermal” mass enhancement factor G is

defined as G ¼ w=ðnRmec2Þ, where w is the enthalpy per unit

volume. The effective mass factor is, generally, a non-trivial

function of plasma temperature and density for both classical

Maxwell–Juttner and the quantum Fermi-Juttner statistics.

However, if the thermal energy of the plasma electrons is

much lower than the Fermi energy, the plasma may be treated

as cold (i.e., having zero temperature). The zero temperature

approximation will be adequate even for temperatures of

order 109 K, allowing a particularly simple expression

G ¼ cF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðnR=ncÞ2=3

q
.2

For an EM wave propagating in the z direction (all

dynamic variables vary only in z and time t), the vector

potential has just transverse components A¼ (A?, 0). For

this simplified 1-D propagation, Eq. (3) can be readily inte-

grated to yield

p? ¼
A?
cF

; (5)

where

cF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðR0nÞ2=3

q
(6)

and

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

?
c2

F

þ p2
z

s
(7)

in terms of the normalized variables A? ¼ ðeA?=mec2Þ; u
¼ ðeu=mec2Þ; p ¼ ðp=mcÞ, and n¼ (nR/N0).

The parameter R0¼ (N0/nc) measures the strength of

plasma degeneracy: for R0� 1, the plasma is nonrelativistic,

while for R0� 1, the plasma is in the relativistic degenerate

state. Note that the dimensionless Fermi momentum now

reads as pF¼ (R0n)1=3.

The Maxwell equation (1) is reduced to the wave equation

@2A?
@t2
� c2 @

2A?
@z2

þ X2
eA? ¼ 0; (8)

where Xe ¼ ð4pe2nR=mecFÞ1=2
is the frame independent

plasma frequency and is a Lorentz scalar. In the standard

literature, it is conventional to define the frequency

xe0 ¼ ð4pe2N0=meÞ1=2
corresponding to the density in the lab

frame; the latter is related to the frame-invariant frequency

through Xe ¼ xe0 ðn=cFÞ1=2
, i.e., the invariant frequency, in

this case, is seen as the lab frame frequency reduced by the

relativistic Fermi effects. There are lots of subtle consider-

ations in creating a strictly Lorentz invariant theory, and the

reader is referred to Refs. 19–21 for a deeper discussion.

The system of equations describing the longitudinal

motion of the electron plasma is given by

@

@t
cFpz þ c

@

@z
ccF � uð Þ ¼ 0; (9)

@

@t
cnþ c

@

@z
npzð Þ ¼ 0; (10)

@2u
@z2
¼ x2

e0

c2
nc� 1ð Þ: (11)

We next carry out a stability analysis for the circularly polar-

ized EM waves. The monochromatic pump EM wave with

frequency x0 and wave number k0 is described as

A? ¼
1

2
x̂ þ iŷð ÞA exp �ix0tþ ik0zð Þ þ c:c: (12)

Here, x̂ and ŷ are the unit vectors; A ¼ a exp ðiwÞ, where a
and w are the real valued amplitude and phase. The unper-

turbed state of the plasma is characterized by a purely trans-

verse EM mode with constant amplitude a¼ a0 (pz ¼ 0 ¼ u)

and a constant co-moving density of electrons n0. This den-

sity is related to the lab frame density by the relation n0¼ 1/

c0 (in units n0¼N0/c0), where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0=c
2
F0

p
and cF0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðR0=c0Þ2=3

q
.

The dispersion relation that follows from Eqs. (8)–(12)

reads

x2
0 ¼ k2

0c2 þ X2
e0; (13)

where Xe0 ¼ xe0ðn0=cF0Þ1=2 ¼ xe0=c1=2
m is the relativistically

modified electron plasma frequency and cm¼ c0cF0. The

expression for cm can be written as cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

F0 þ a2
0

p
,

where pF0 ¼ ðR0=c0Þ1=3
is the Fermi momentum. In the

weakly degenerate case, when R0� 1 and pF0� a0, Eq. (13)

coincides with the dispersion relation for cold classical plas-

mas with Xe0 ¼ xe0=ð1þ a2
0Þ

1=2
, while for the arbitrary R0

and in the absence of the pump wave (a0¼ 0), the modified

plasma frequency reads Xe0 ¼ xe0=ð1þ R
2=3
0 Þ

1=2
.

Most spectacular manifestations of plasma degeneracy,

however, occur for radiation with relativistically large ampli-

tudes, i.e., when a0� 1, and the radiative modification of the

effective electron-mass becomes comparable to or dominant

over the degeneracy modification (see Ref. 20 for a detailed

discussion on the radiative renormalization of the electron

mass). For extreme relativistic amplitudes, the effective c
simplifies to cm ’

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0

p
, essentially the expression for a

nondegenerate plasma. For arbitrary values of a0 and R0

(measuring the degeneracy strength), the relativistic factor c0

can be found from the following implicit relation:

c2
0 � 1

� �
1þ R0

c0

� �2=3
 !

¼ a2
0 (14)

that can be readily solved. In Fig. 1, we plot c0 vs a0 for dif-

ferent values of R0. The dashed part of each curve corre-

sponds to pF0< 1. For larger values of R0, stronger fields are

required to achieve large values of c0.

A short message of the preceding results is that in the

field of strong EM waves (see Fig. 1), the effects of electron

degeneracy become subdominant and the plasma responds as

a weakly degenerate system.
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To investigate the stability of the ground wave solution,

we introduce the small perturbations in the system f¼ f0þ df
(f0� df), where f ¼ ða;w; n; pz;uÞ. Neglecting higher order

terms, Eqs. (8)–(11) can be reduced to the following system

of coupled equations:

2x0

@

@t
þ 2k0c2 @

@z

� �
dwþ @2

@t2
� c2 @

2

@z2

� �
da

a0

þX2
e0

dn

n0

� dcF

cF0

� �
¼ 0; (15)

2x0

@

@t
þ 2k0c2 @

@z

� �
da

a0

þ c2 @
2

@z2
� @2

@t2

� �
dw ¼ 0; (16)

@2

@t2
þ X2

e0

� �
dc
c0

þ dn

n0

� �
¼ c2 @

2

@z2

dc
c0

þ dcF

cF0

 !
; (17)

while relations between dc and dcF obtained from Eqs. (6)

and (7) are

dc
c0

¼ a
da

a0

� dcF

cF0

 !

dcF

cF0

¼ b
dn

n0

(18)

with a ¼ ð1� 1=c2
0Þ and b ¼ ð1� 1=c2

F0
Þ=3.

To obtain the dispersion equation, we assume that all

perturbations depend on the coordinates and time like df
	 exp ð�ixtþ ikzÞ. After some algebra, Eqs. (15)–(18) lead

to dispersion relation

X2
e0

2
Aa

1

De
c2k2 þ X2

e0 � x2
� � 1

D�
þ 1

Dþ

� �
¼ 1; (19)

where D6 ¼ ðx06xÞ2 � c2ðk06kÞ2 � X2
e0 and De ¼ x2

�X2
e0 � V2

mk2c2. Here, V2
m ¼ bð1� aÞ=ð1� abÞ; Aa ¼ að1

�bÞ=ð1� abÞ, which can be presented in the explicit form

as

V2
m ¼

1

3
V2

F0 1� a2
0

c2
m

 !
1� 1

3
V2

F0

a2
0

c2
m

 !�1

; (20)

Aa ¼
a2

0

c2
mc2

m0

; (21)

where VF0 is the dimensionless (VF0! VF0/c) Fermi velocity

defined by the relation VF0¼ (pF0/cF0) and cm0 ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

m

p
.

The dispersion relation (19) has the form similar to the

one obtained in Ref. 8. In this study, the authors investigated

the SRS in classical relativistic plasmas where thermal effects

were included by a waterbag model for electron distribution.

It happens so that the description of a fully degenerate plasma

is formally analogous to a waterbag model,16 and this analogy

is reflected in the form of Eq. (19). Important differences,

induced by plasma degeneracy, are contained in the expres-

sions (20) and (21) _Note; in a classical plasma, Vm is deter-

mined by the temperature (an independent parameter of the

problem), while in a degenerate system, Vm depends on

plasma density (determining the “Fermi temperature”). For

ultra-relativistic degeneracy (R0� 1), Vm ! 1=
ffiffiffi
3
p

. Hence,

the maximal value of the parameter cm0 ’ 1.22.

The solutions of Eq. (19) lead to resonance backward

and forward SRS. Like in the classical plasma, under certain

simplified assumptions, temporal growth rates (C¼ Im(x))

of instabilities can be obtained analytically. However, since

the dispersion relation is a sixth order algebraic equation for

x, numerical solutions may be more useful.

The transverse EM and the plasma waves are coupled

by the parameter v ¼ X2
e0Aa, and the growth rates of the

above mentioned instabilities are proportional to a certain

power of the coupling parameter v. In the weakly degenerate

case, R0� 1 and the finite strength of the field amplitude

(a0) cm 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0

p
; Vm � 1 and v ¼ x2

e0=c
3
m. In this case,

the dispersion relation (19) and, consequently, the results of

instability coincide with the results obtained in the classical

cold plasma embedded in the field of arbitrary strong radia-

tion.6,7 Here, we would like to remark that our consideration

is valid if the average kinetic energy of electrons (	�F)

is larger than their interaction energy (	e2N
1=3
0 ). This condi-

tion is fulfilled for a sufficiently dense plasma when N0

� 1023cm�3 ð1� R0 � 10�7Þ.
The main features and peculiarities of SRS instability in

the plasma with a finite level of degeneracy parameter R0

can be deduced by analyzing Eqs. (20) and (21) for different

limiting cases. We look for the solution of Eq. (19) in the

form x ¼ xLþ dx, where xL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

e0 þ V2
mk2c2

q
. The max-

imum growth rates are obtained when the scattered wave is

also resonant D�ðx ¼ xLÞ ¼ 0, leading to the following

relation:

x0 ¼ ðX2
e0 þ c2k2V2

mÞ
1=2 þ ððk0 � kÞ2 þ X2

e0Þ
1=2: (22)

Using Eq. (22), one can show that in an underdense

plasma (x0> 2Xe0), the wave vector of resonant modes k
lies in the range 0< k< 2k0. The modes with k> k0 and

k< k0 lead to backward and forward Raman instabilities,

respectively. For a highly transparent plasma (x0�Xe0), the

backward Raman instability develops at k ’ 2x0=cð1þ VmÞ
and xL ¼ ½X2

e0 þ 4x2
0V2

m=ð1þ VmÞ2�1=2
.8 Neglecting the

FIG. 1. Dependence of c0 on the EM field strength a0 for different levels of

degeneracy: (a) R0¼ 0.01, (b) R0¼ 2, and (c) R0¼ 4.
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nonresonant term (	1/Dþ) in Eq. (19) and making approxi-

mations D� ¼ �2ðx0 � xLÞdx and xL� dx (and recalling

that Xe0 ¼ xe0=c1=2
m ) for the growth rate, we get the follow-

ing expression:

C ¼ xe0ffiffiffi
2
p a0

c3=2
m

x0 1� Vmð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � xLð ÞxL

p : (23)

For forward Raman scattering instability k� k0
x0/c, both

downshifted and upshifted scattered waves are resonant

modes D6 ¼ 2ðxL6x0Þdx. The maximum growth rate is

given as follows:

C ¼ x2
e0

2x0

a0

c2
mcm0

(24)

occurs at k ¼ Xe0cm0/c and xL¼Xe0cm0.

As per expectations, in the limit of nonrelativistic

degeneracy (R0� 1), Eqs. (23) and (24) tend to five the clas-

sical results for a cold plasma. For the finite level of degener-

acy parameter R0 and nonrelativistic strengths of the field

(a0� 1), the growth rates of forward Raman instability is

reduced by factor ð1þ R
2=3
0 Þ in comparison to the weakly

degenerate case, while for backward instability, the reduc-

tion factor turns out to be ð1þ R
2=3
0 Þ

3=4
.

The most interesting regime, explored in this note, is

that of a relativistic degenerate plasma (R0� 1) embedded in

the field of a relativistically strong EM wave (a0� 1). In the

regime of very strong radiation (a0/c0� 1 [see Fig. 1 and

comments after Eq. (13)], even a highly degenerate plasma

responds as a weakly degenerate one. For ultrarelativistic

amplitudes, defined by R0/c0< 1, the Fermi velocity

becomes small (Vm! 0), and cm 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0

p
. Consequently,

the character of the SRS instability, in particular its growth

rate, tends to approach the cold classical plasma results.

In this letter, we investigated the linear stage of SRS

instability of a propagating arbitrary amplitude circularly

polarized EM wave in a degenerate electron plasma. For 1-D

wave propagation, it is demonstrated that in the field of

ultra-relativistic amplitude waves, the relativistic degenerate

plasma effectively responds as a weakly degenerate plasma

due to reduction of Fermi momentum. While for weak, non-

relativistic amplitudes (but relativistic degenerate plasma),

the growth rates of instability reduce with increasing density.

The elucidation of the SRS instability induced by ultra-

strong EM waves in a relativistic degenerate plasma is highly

pertinent to understanding the dynamics of X-ray pulses

emanating from compact astrophysical objects. It will be

equally relevant for an exploration of nonlinear interactions

between intense laser pulses and a dense degenerate plasma;

the latter class of physical systems are likely to be realized

in the next-generation intense laser solid density plasma

experiments.
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