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The filamentation instability of the electromagnetic (EM) beam in an underdense plasma with high level 
of degeneracy is examined by means of the momentum equation, continuity equation and Maxwell’s 
equations. It has been demonstrated that the instability develops for weakly as well as strongly relativistic 
degenerate plasma and arbitrary strong amplitude of EM beams.

© 2018 Published by Elsevier B.V.
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1. Introduction

From observations it is evident that certain class of astronom-
ical sources have extremely high luminosities covering almost the 
whole range of electromagnetic spectra [1]. Usually, for the internal 
structures of post-main sequence stars, with dense magnetospheric 
plasma [2], the convenient approach is not working any more be-
cause of the high degeneracy of electrons. If this is the case, the 
physical system has to be described by the Fermi–Dirac distribu-
tion when the corresponding Fermi energy, εF exceeds that of the 
binding energy of electrons, which leads to ionisation of atoms. 
For such a system the concentration of electrons is of the order of 
1026−34 cm−3 and consequently the mean spacing between parti-
cles is small compared to the thermal de Broglie wavelength. [3].

One can straightforwardly show that for electron concentra-
tions, n, exceeding the critical value nc = m3

e c3/3π2h̄3 = 5.9 ×
1029 cm−3, the energy of Fermi level εF = mec2 (γF − 1), might 
exceed the rest mass energy, implying that at such densities, 
the degenerate electron gas must be treated relativistically even 
if its “temperature” is nonrelativistic, or even zero. Here, γF =√

1 + p2
F /m2

e c2 and pF = mec (n/nc)
1/3 represent the Fermi rela-

tivistic factor and relativistic momentum respectively [4].
In a series of papers [5–8], where authors examined the nonlin-

ear character of interactions of plasma waves and high frequency 
EM waves it was found that regardless of the degeneracy stable 

✩ Fully documented templates are available in the elsarticle package on CTAN.
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localised EM structures are induced. The stimulated Raman scat-
tering (SRS) instability for such a plasma was studied in one di-
mensional case [9]. The authors have shown that the degenerate 
relativistic plasma reveals interesting properties of SRS instabil-
ity in low density plasma with the frequency ω > 2ωe , where 
ωe = (

4πe2n0/me
)1/2

represents the plasma frequency and n0 is 
equilibrium number density of electrons. For highly dense plasma, 
the radiation process might potentially lead to hard X-rays, with 
specific observational features.

Intense EM waves may undergo filamentation instability (FI) in 
the underdense plasma. This process inevitably leads to break up 
of the EM field into multiple beamlets in the direction perpendic-
ular to the incoming radiation [10]. The linear as well as nonlinear 
regime of FI has been actively studied in nonrelativistic and rel-
ativistic intense EM beams [11–15]. However, to the best of our 
knowledge, the FI of EM radiation in degenerate relativistic plasma 
is not addressed so far.

In the present paper, we apply the fluid-Maxwell model de-
veloped in [5], [7] to study the possibility of FI of intense nar-
row electromagnetic pulse L⊥ << L‖ (where L‖ and L⊥ are the 
characteristic longitudinal and transverse spatial dimensions of the 
field, respectively) in the transparent degenerate electron plasma 
to show the possibility of FI in relativistic degenerate plasma em-
bedded in the field of arbitrary strong EM radiation.

2. Main consideration

Our approach is based on methods and tools developed in 
previous works. In particular, we imply the Maxwell’s equations 
and the relativistic electron plasma fluid model. Throughout the 
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paper it is assumed that the thermal energy of electrons is neg-
ligible compared to their Fermi energy. In the framework of 
the model the ions are considered to be in stationary states, 
forming neutralizing background. For zero generalized vorticity 
� = ∇× (Gp − eA/c) = 0, the electron fluid equations are given 
by (see Ref. [5] for details):

∂

∂t
(Gp − eA/c) + ∇

(
mcc2Gγ − eϕ

)
= 0, (1)

∂

∂t
N + ∇ · (NV) = 0. (2)

The corresponding Maxwell’s equations in the Coulomb gauge 
∇ · A = 0 are expressed as follows:

∂2A

∂t2
− c2�A + c

∂

∂t
(∇ϕ) + 4πecNV = 0 (3)

�ϕ = 4πe(N − n0), (4)

where A and ϕ represent the EM field vector and scalar poten-
tials respectively; p = meγ V denotes the hydrodynamic momen-

tum of electrons, V is the velocity and γ = (
1 + p2/m2

e c2
)1/2

is 
the Lorentz factor; N denotes the electron number density in the 
laboratory frame of reference, that is related to the rest frame elec-
tron density by following N = γ n. It is evident from Eq. (1) that 
for the arbitrary strength of relativity defined by the ratio n/nc

the “effective mass” factor G for fully degenerate plasma (i.e. hav-
ing zero temperature) coincides with the Fermi relativistic factor 
G = γF = (

1 + (n/nc)
2/3)1/2

.
To study the problem of the nonlinear self-guiding of the 

EM beam in a highly transparent electron plasma we apply 
Eqs. (1)–(4), which for the generalized momentum � = Gp and 
relativistic factor 	 = Gγ reduce to the following set of dimen-
sionless equations

∂

∂t
(� − A) + ∇ (	 − ϕ) = 0, (5)

∂

∂t
N + ∇ · J = 0, (6)

∂2A

∂t2
− �A + ∂

∂t
(∇ϕ) + ε2J = 0, (7)

�ϕ = N − 1, (8)

were J = N�/	 and 	 = (
G2 + �2

)1/2
, t̃ = ωt , r̃ = ωr/c, Ã =

eA/mec2, ϕ̃ = eϕ/mec2, �̃ = �/mec, ñ = n/n0 and Ñ = N/n0 (in 
the above equations the tilde is omitted). Here we assume that 
the plasma is highly underdens, ε = ωe/ω << 1, where ε is a 
small parameter of the system and G = (

1 + R2
0n2/3

)1/2
where 

R0 = (n0/nc)
1/3.

Following the method of multiple scale expansion of the equa-
tions in the small parameter ε [16], [17], the physical variables 
(Q = A, ϕ, �, 	, N, G) expand as

Q = Q {0} (ξ, x1, y1, z2) + εQ {1} (ξ, x1, y1, z2) , (9)

where (x1, y1, z2) = (
εx, εy, ε2z

)
and ξ = z −bt and 

(
b2 − 1

) ∼ ε2. 
In the framework of the paper we assume that the EM field is 
circularly polarized

A{0⊥} = 1

2
(̂x + îy) A exp (iξ/b) , (10)

with a slowly varying function A.
In the zeroth order approximation for the longitudinal (to the 

direction of EM wave propagation z) component of Eq. (5) one 
can straightforwardly show �{z0} = 0 whereas for the transverse 
Fig. 1. Dependence of 	0 on the EM field strength A0 for different level of degener-
acy: (A) R0 = 0.1, (B) R0 = 3, and (C) R0 = 5.

component we obtain �{0⊥} = −A{0⊥} . From the transverse part of 
Eq. (5) to the first order in ε and Eq. (6) one can conclude that 
	{0}, ϕ{0} and N{0} are independent from the fast variable ξ . For 
the transverse part of the first order of Eq. (5) we arrive at

−b
∂

∂ξ

[
�⊥{1} − A⊥{1}

] + ∇⊥
(
	{0} − ϕ{0}

) = 0, (11)

where ∇⊥ = (̂x∂/∂x1 + ŷ∂/∂ y1). By averaging Eq. (8) over the fast 
variable ξ the equation reduces to

∇⊥	{0} = ∇⊥ϕ{0}, (12)

where 	{0} =
(

G2{0} + |A|2
)1/2

, G{0} =
(

1 + R2
0n2/3

{0}
)1/2

and the rest 
frame electron density is denoted by n{0} . This value is related to 
the lab frame density by the following relation

n{0} = G{0}N{0}
	{0}

. (13)

Eq. (12) leads to 	{0} − ϕ{0} = 	0 provided that EM field inten-
sity forms a constant background |A|2 → |A0|2 for |r⊥| → ∞ while 
ϕ{0} → 0 and N{0} → 1. After combining this algebraic relation 
with Eq. (13) one can obtain the expression for the plasma elec-
tron density:

N{0} =
(

	0

R0

)3 (1 + 
)
[
(1 + 
)2 − (

1 + |A|2)/	2
0

]3/2[
(1 + 
)2 − |A|2 /	2

0

]1/2
, (14)

where 
 denotes the normalized value of ϕ: 
 = ϕ/	0.
An “effective” relativistic factor, 	0, for the given boundary con-

ditions depends on the parameters R0 and |A0|2 by the following 
implicit expression:(

1 − 1 + |A0|2
	2

0

)
− R2

0

	2
0

(
1 − |A0|2

	2
0

)1/3

= 0. (15)

One can see that when Eq. (15) is satisfied N{0} = 1 for 
− > 0.
For the weakly degenerate plasma R0 << 1 the constant 	0

coincides with the Lorentz factor of electrons in classical cold plas-

mas 	0 � (
1 + |A0|2

)1/2
. In the weakly relativistic amplitudes of 

EM field (|A0| → 0) 	0 is determined by the degeneracy parame-

ter 	0 � (
1 + R2

0

)1/2
. In Fig. 1 we show the dependence of 	0 on 

|A0| for different values of R0. In the extreme relativistic ampli-
tudes (|A0| 	 1), 	0 tends to |A0| (essentially the expression of 
a nondegenerate plasma) for an arbitrary level of the degeneracy 
parameter R0.
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By considering the slowly varying envelope, Maxwell’s equation 
(7) and the Poisson’s equation (8) reduce to

2i
∂ A

∂z2
+ ∇2⊥ A + σ A − A

N{0}
	{0}

= 0, (16)

∇2⊥
 = 1

	0

(
N{0} − 1

)
, (17)

where σ = (
b2 − 1

)
/b2ε2. For b = ω/kc one can see that σ −

1/	0 = 0 leads to the following dispersion relation ω2 = k2c2 +�2
e , 

with �e = ωe/	0 representing a plasma frequency modified by 
the effective relativistic factor 	0. Introducing the following re-
normalizations z = z/	0 and r⊥ = r⊥/	

1/2
0 Eqs. (16)–(17) can be 

written as

2i
∂ A

∂z
+ ∇2⊥ A +

(
1 − N


 + 1

)
A = 0, (18)

∇2⊥
 + 1 − N = 0, (19)

where we have omitted subscripts for the variables (z2, x1, y1,

N{0}).
To study the stability of the ground state solution we lin-

earized the system of equations (18)–(19) in the form A = A0 +δA, 

 = δ
, N = 1 + δN . By assuming that all perturbed quantities 
(δA, δ
, δN) depend on coordinates as exp(χ z + ik⊥r⊥), the fol-
lowing dispersion relation can be obtained

χ = 1

2
k⊥

(
1 + k2⊥(

k2⊥ + C


) |A0|2 Ca − k2⊥

)1/2

(20)

that implies the necessary condition for the instability

1 + k2⊥(
k2⊥ + C


) |A0|2 Ca > k2⊥, (21)

where Ca = −2 
[
∂N/∂ |A|2]|A|=|A0|,
=0 and

C
 = [∂N/∂
]|A|=|A0|,
=0. From Eq. (15) one can show that vari-
ables Ca , C
 are both positive and they can be presented as 
Ca = Q /R2

0 and C
 = 1 + 	2
0 Q /R2

0 where

Q = 2	−2
0

(
1 − |A0|2 /	2

0

)−4/3 [
3/2 + 	2

0 − (1 + |A0|2)
]
. (22)

From the structure of Eqs. (20)–(22) it is evident that the per-
turbations with the transverse wave number 0 < k⊥ < klim, where 
klim is a certain limiting value, are unstable with respect to z. 
Since Eq. (20) contains several parameters |A0| , 	0 and R0, which 
are interrelated by Eq. (15), in general, should be obtained nu-
merically. However, for small amplitude pump waves |A0| << 1, 
Q � (

1 + 2	2
0

)
/	2

0 the dispersion relation reads as

χ = 1

2
k⊥

(
|A0|2 K 2

	0
− k2⊥

)1/2
, (23)

where K	0 = [(
1 + 2	2

0

)
/3	4

0

]1/2
and the Lorentz factor de-

termined by the degeneracy parameter R0 is given by 	0 =(
1 + R2

0

)1/2
(see Eq. (15)). For weakly degenerate plasma (R0 <<

1) K	0 → 1 while in the ultrarelativistic case (R0 >> 1) K	0 �
(2/3)1/2 /R0.

From Eq. (23) it is clear that klim = |A0| K	0 << 1 and the 
instability increment χ reaches its maximum χm = |A0|2 K 2

	0
/4

for the transverse wave vector k⊥m = 2−1/2 |A0| K	0 , correspond-
ing to the characteristic spatial scale of filaments �⊥ = π/k⊥m . 
It is worth noting that by increasing the value of R0 the spatial 
scale of filaments increases as well. The “critical” power of the 
EM field carried by the filaments could be estimated as Pc = π
Fig. 2. Dependence of instability increment χ on k⊥ for different values of A0: A0 =
0.5 – solid line, A0 = 1 – dashed line, A0 = 2 – dotted line.

Fig. 3. Dependence of instability increment χ on k⊥ for different values of R0: A0 =
3 – solid line, A0 = 1 – dashed line, A0 = 0.2 – dotted line.

|A0|2 �2⊥/4 � 7.8K −2
	0

which, as it is evident, does not depend 
on the pump strength and increases with R0. The mentioned 
critical power is expressed as Pcd = (

m2
e c5/4e2

)
(ω/ωe)

2 Pc ≈
1.7 × 1016 K −2

	0
(ω/ωe)

2erg/sec. A physically reasonable interval 
of allowed densities of the degenerate electron plasma is within 
(1024 − 1034) cm−3 [R0 ∼ 1.2 − 25], leading to the following value 
of the power Pcd ≈ (

17 × 10−3 ÷ 10.6
)
(ω/ωe)

2 × 1019 erg/sec.
To calculate the increment of FI for the arbitrary strength of EM 

pump the numerical analyses of Eqs. (15), (20)–(22) has been per-
formed. In Fig. 2 for R0 = 1 we show the dependence of χ on k⊥
for different values of |A0|. It is clear that the maximum of the 
instability increment and the range of k⊥ over which an instabil-
ity occurs (0 < k⊥ < klim) increase with increasing values of |A0|. 
Such a behaviour is valid for the arbitrary strength of degeneracy 
parameter R0. Unlike the regime of weak amplitudes (|A0| << 1)

in ultrarelativistic case |A0| ≥ 1 for the characteristic wave vectors 
of unstable modes we have km (klim) ≥ 1. In Fig. 3 we demonstrate 
dependence of χ on k⊥ when |A0| = 1 for the different level of 
degeneracy R0. With increase of the degeneracy level the growth 
rates and klim decrease.

It is worth noting that since we deal with X-ray sources the 
wave amplitude |A0| is not arbitrarily large in the framework of 
the developed approach. In particular, |A0| (in units e A0/mec2) can 
be given as |A0|2 = 3.65 × 10−12 × I × λ2 [μ], where I is the EM 
wave intensity measured in erg/(sec cm2) and the wave length λ
is in micrometres. For |A0| = 10 and λ = 0.1 nm (h̄ω = 12.4 KeV) 
I � 2.7 × 1035erg/(sec m2) while electric field of the wave is E �
3 × 1015 V/cm which is by order of magnitude smaller than the 
Schwinger limit E S = m2

e c3/eh̄ = 1.3 × 1016 V/cm. Above this limit 
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the EM field is expected to become nonlinear and the considered 
approach fails. In particular, under these circumstances, the process 
of electron–positron pair creation can take place.

3. Conclusion

We have shown that the powerful EM beam propagating in the 
underdense degenerate plasma undergoes the FI. This process takes 
place regardless of degeneracy, implying that the beam power is 
larger than the critical power of the appeared structures. The dy-
namics of formation of filaments in the nonlinear stage and the 
subsequent complex behaviour should be investigated by means of 
numerical simulations of Eqs. (18)–(19) and is beyond of the in-
tended scope of the current paper.

The study of the FI driven by extremely strong EM pulses is sig-
nificant for understanding dynamics of electromagnetic emission 
originating from a certain class of astrophysical objects. In particu-
lar, it has been widely accepted that X-ray emission might appear 
from accreting white dwarfs (WD) [22]. In this scenario, the men-
tioned object accretes material from a companion star, resulting 
in the hitting process of plasma flow on a star’s surface and by 
means of the Bremsstrahlung mechanism the particles decelerate, 
leading to generation of X-ray radiation. On the other hand, the 
WDs are composed of highly degenerate electrons and the study of 
their interaction with the induced X-rays might be very promising. 
The similar process might take place also in neutron stars (NSs) 
loaded by accretion disk generating hard X-rays [2]. Interiors of 
NSs mainly consist of neutrons with approximately 1% of electrons 
and protons [2], which are also in highly degenerate state, there-
fore, the FI might be of high significance. Another interesting class 
of objects where the aforementioned process might develop are 
the gamma ray bursters (GRB). It is thought that the high energy 
radiation of GRB might be generated during a supernova explo-
sion of relatively massive stars, which after they collapse form NSs 
[23]. Since this manuscript was a first attempt of this kind the ap-
plication of the developed model to the mentioned astrophysical 
objects is beyond the scope of the paper.

The filamentation instability might be interested in the case 
of interaction of superstrong electromagnetic radiation with lab-
oratory plasmas [18]. Such plasmas imbedded in the field of 
the superstrong laser radiation, with intensities of the order of 
1021−23 W cm−2 can exhibit various interesting phenomena in-
cluding self-focusing and FI. The most of the super powerful lasers 
currently are operating at the wavelength λ ∼ 1 μm (h̄ω ∼ 1.2 eV). 
Since the density of degenerate plasma by several orders of magni-
tude exceeds the critical density for such micron wavelength laser 
pulses the plasma is opaque. We would like to emphasise that in 
the standard scheme of the fast ignition model [19] plasma is sup-
posed to be compressed at temperatures as low as possible, while 
by means of a powerful ultra short beam the ignition should oc-
cur. However, a compressed target can be in degenerate states [20]. 
Such plasma states can be transparent just for X-ray lasers. Recent 
achievements in the X-ray free-electron laser technology made it 
possible to achieve intensities above 1020 W cm−2 at 9.9 keV 
(λ ∼ 1.3 × 10−4 μm, hard X-rays) [21]. This achievement gives us 
a hope that the increase of X-ray laser pulse intensities are fea-
sible. Effects like FI (self-focusing) can be significant in producing 
X-rays with small spot sizes in the processes of interaction with 
highly compressed degenerate plasmas.
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